Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans.

نویسندگان

  • Nicolas Grillet
  • Martin Schwander
  • Michael S Hildebrand
  • Anna Sczaniecka
  • Anand Kolatkar
  • Janice Velasco
  • Jennifer A Webster
  • Kimia Kahrizi
  • Hossein Najmabadi
  • William J Kimberling
  • Dietrich Stephan
  • Melanie Bahlo
  • Tim Wiltshire
  • Lisa M Tarantino
  • Peter Kuhn
  • Richard J H Smith
  • Ulrich Müller
چکیده

Hearing loss is the most common form of sensory impairment in humans and is frequently progressive in nature. Here we link a previously uncharacterized gene to hearing impairment in mice and humans. We show that hearing loss in the ethylnitrosourea (ENU)-induced samba mouse line is caused by a mutation in Loxhd1. LOXHD1 consists entirely of PLAT (polycystin/lipoxygenase/alpha-toxin) domains and is expressed along the membrane of mature hair cell stereocilia. Stereociliary development is unaffected in samba mice, but hair cell function is perturbed and hair cells eventually degenerate. Based on the studies in mice, we screened DNA from human families segregating deafness and identified a mutation in LOXHD1, which causes DFNB77, a progressive form of autosomal-recessive nonsyndromic hearing loss (ARNSHL). LOXHD1, MYO3a, and PJVK are the only human genes to date linked to progressive ARNSHL. These three genes are required for hair cell function, suggesting that age-dependent hair cell failure is a common mechanism for progressive ARNSHL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel splice site mutation of myosin VI in mice leads to stereociliary fusion caused by disruption of actin networks in the apical region of inner ear hair cells

An unconventional myosin encoded by the myosin VI gene (MYO6) contributes to hearing loss in humans. Homozygous mutations of MYO6 result in nonsyndromic profound congenital hearing loss, DFNB37. Kumamoto shaker/waltzer (ksv) mice harbor spontaneous mutations, and homozygous mutants exhibit congenital defects in balance and hearing caused by fusion of the stereocilia. We identified a Myo6c.1381G...

متن کامل

Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle.

Usher syndrome (USH) is the leading cause of inherited deaf-blindness, with type 2 (USH2) being the most common clinical form. Studies suggest that proteins encoded by USH2 causative genes assemble into the ankle link complex (ALC) at the hair cell stereociliary bundle; however, little is known about the in vivo assembly and function of this complex. Using various USH2 mutant mice, we showed by...

متن کامل

Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish.

Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelia...

متن کامل

Multiple quantitative trait loci modify cochlear hair cell degeneration in the Beethoven (Tmc1Bth) mouse model of progressive hearing loss DFNA36.

Dominant mutations of transmembrane channel-like gene 1 (TMC1) cause progressive sensorineural hearing loss in humans and Beethoven (Tmc1Bth/+) mice. Here we show that Tmc1Bth/+ mice on a C3HeB/FeJ strain background have selective degeneration of inner hair cells while outer hair cells remain structurally and functionally intact. Inner hair cells primarily function as afferent sensory cells, wh...

متن کامل

A mouse model for nonsyndromic deafness (DFNB12) links hearing loss to defects in tip links of mechanosensory hair cells.

Deafness is the most common form of sensory impairment in humans and is frequently caused by single gene mutations. Interestingly, different mutations in a gene can cause syndromic and nonsyndromic forms of deafness, as well as progressive and age-related hearing loss. We provide here an explanation for the phenotypic variability associated with mutations in the cadherin 23 gene (CDH23). CDH23 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of human genetics

دوره 85 3  شماره 

صفحات  -

تاریخ انتشار 2009